ACET Junior Academies'

Scheme of Work for Science
 Big Idea - Materials
 Year 1 - Everyday Materials

About this unit:

PoS - Everyday materials
At some point the students should add information to the year book - particularly photos of trees, bushes and hedges.
Students should have an awareness of different materials, but during this unit they should learn to differentiate between an object and the material from which it is made. They should develop an awareness of scientific terms, and begin to use those terms appropriately. There will be opportunities to develop their investigative skills, with an emphasis on developing their curiosity, and asking questions. All the investigations should lead to the students becoming more confident in using key terms appropriately, and they should be encouraged to do so at every opportunity. By the end of the unit, they should be familiar with the term 'properties of a material', and be able to suggest the properties of a material which they are shown.

This unit is linked to History - Changes in living memory, with an opportunity to compare toys of the present with those of the past, looking at the different materials which are used

A list of definitions of key terms is found on Enquiry 5.

Unit structure

This unit is structured around seven science enquiries:

1. What are materials?
2. What makes materials different?
3. What materials are toys made from?
4. Can you design an object?
5. Can you compare like a scientist?
6. Do we use different materials for different jobs?
7. Should we treat all materials the same?

Links to previous and future National Curriculum units
 History - Changes in living memory

- Y2 - Uses of everyday materials
- Y5 - Properties and changes of materials

Enquiry 1: What are materials?

Enquiry 3: What materials are toys made from?				
Links to previous learning	Scientific skills		Assessment criteria	Curricular links
Children should ask questions about the place they live, and talk about why things happen and how things work.	EA - Research Asking questions Observing and measuring Key concepts: Using words to describe the properties of materia Recognising that there has been a change in th	terials we use over time	Can your children: Describe differences in toys from different eras - Recognise the different materials that were used in different eras GD - discuss reasons why different materials may have been used	Horizontal: History - toys in different eras Vertical: Y2 - Uses of everyday materials Y5 - Properties and changes of materials
		Common misconceptions		
Wood, metal, ceramic, plastic, rock, fabric, glass, hard, soft, shiny, waterproof, strong, flexible/bendy				
Suggested activities		Resources	Useful links	
What materials were toys made from in different eras? Investigate what different toys were used over the years. What materials were they made from? What properties did that give the toys?		Examples of toys from eras within living memory		

inks to previous learning

Enquiry 4: Can you design an object?

Children should be able to ask questions about the place they live.
Manipulate materials to have a planned effect.

Scientific skills

EA - Comparative/fair testing

Asking questions
Making predictions
Setting up tests
Observing and measuring

Key concepts:

We can find out about a material's properties by testing it

Assessment criteria

Can your children:

- Carry out a
simple
investigation
- Recognise the
need to do the same things each time

Curricular links

Horizontal:

D\&T

Vertical:

Y2 - Uses of everyday materials
Y5 - Properties and changes of materials Investigative skills - all years

Key terms

Wood, metal, ceramic, plastic, rock, glass, hard, soft, shiny, waterproof strong, flexible/bendy
Suggested activities
Doll in a 'waterproof coat' sitting in a tray. Sprinkle the doll with water - do
the students think the doll has got wet? Why/why not?
Produce different materials. The students need to test whether they are waterproof or not. They could be designing a tent/fishing shelter if they are not motivated by making a waterproof coat for a doll.

How will you decide if the material is waterproof or not?
How will you be fair to all the materials?
The material does not need to be tested on the doll! Good methods would be to stretch it over the top of a beaker, and see how many drops/cm³ of water can be added before it goes through. Or cover your hand with it, and put your hand in water - how long before it feels wet?
Engage the students in deciding how they will test the material.
Greater depth - did you prove which was the most waterproof material? Are you completely sure? Was your way of testing fair? Could you have done anything differently?

Common misconceptions

Resources Useful links

4 different materials of
comparable sizes.

Beakers/containers that the material can be stretched over
Elastic bands to secure the material
Containers for holding/pouring water
Measuring cylinders or similar for measuring small volumes of liquid

Doll wearing some kind of coat, in a tray, and a watering can

Enquiry 5: Can you compare like a scientist?

Links to previous learning	Scientific skills		Assessment criteria	Curricular links
Children should manipulate materials to achieve a planned effect	EA - Pattern Seeking Setting up tests Observing and measuring Recording data Key concepts: Scientists know about the different properties of materials because they test them. When we test things, it tells us something about them.		Can your children: - Use some of the words for describing properties - Describe how to test for different properties	Horizontal: Vertical: Y2 - Uses of everyday materials Y5 - Properties and changes of materials Investigative skills - all years
Key terms Rust, magnetic, hard, strong, heat, electricity, shiny, heavy, malleable Suggested activities Remind students that scientists always collect data in order to make comparisons - they don't 'just' look at things. Compare iron (e.g a nail), brass or copper, and wood. Circus of activities. Terms in bold are the ones that students would be expected to use. Rusting - set up in advance with the materials sitting in water for a week. Students observe what is different. Magnetism - students use a magnet to test *Thermal conductivity - put one end of the material in hot water - what does the other end feel like? Does the material pass heat along it? This works best with hot water, and will need adult supervision - best as a demonstration. **Electrical conductivity - Make a circuit with a cell and a bulb, leaving two crocodile clips to complete the circuit. Students attach the crocodile clips to the materials to see whether they pass electricity along it. As students have no experience with circuits, this will need adult supervision and explanation Shiny - observation Heavy - weigh comparable volumes Hard - is it easy to scratch? Strong - look at pictures of the material in use. Strong means that it can withstand forces well - e.g. it can hold things up without being squashed. Malleable - it can be stretched into a wire, or bent into new shapes - look at pictures of the material in use - GD only. Best demonstrated by pictures of the materials being used in different ways, although the students can try stretching them.		Common misconceptions		
		Students are often unclear on the definitions of 'hard' and 'strong'		
		Resources	Useful links	
		3 different materials (e.g. iron nail, brass drawing pin, small piece of wood) which have been left in a container of water (with the lid off) for a week. The same 3 materials available for the following tests set up as a circus: Magnets *A container of warm/hot water A simple electrical circuit Results table		

Enquiry 6: Do we use different materials for different jobs?				
Links to previous learning	Scientific skills		Assessment criteria	Curricular links
Ask questions about the place where they live. Talk about why things happen and why they work.	EA - Identifying, grouping and classifying Asking questions Making predictions Observing and measuring Recording data Key concepts: Reinforcing the difference between objects and made. Some materials have a wider range of uses than	materials from which they are rs.	Can your children: - Differentiate between an object and the material from which it is made - Recognise that materials can be used in different ways	Horizontal: Vertical: Y2 - Uses of everyday materials Y5 - Properties and changes of materials Investigative skills - all years
Key terms Wood, metal, ceramic, plastic, rock, glass, hard, soft, waterproof, strong, flexible/bendy, rust, magnetic, hard, strong, heat, electricity, shiny, heavy, malleable		Common misconceptions		
Suggested activities		Resources	Useful links	
Doing a survey of usefu How many objects ma Are the objects made Material Some materials can be uses. Which material is GD - compare the pro useful'.	materials - e.g. wood, metal, glass from each material can you find? om each material all the same? What is is used for used in lots of different ways. Others have fewer the most useful in this classroom? erties of the 'most useful' materials with the 'least			

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Enquiry 7: Should we treat all materials the same?}

\hline Links to previous learning \& \multicolumn{2}{|l|}{Scientific skills} \& Assessment criteria \& Curricular links

\hline \multirow[t]{3}{*}{Children should ask questions about the place in which they live, and talk about why things happen and how they work.} \& EA - Comparative/fair testing

Asking questions
Making predictions

Setting up tests \& \& \multirow[t]{3}{*}{\begin{tabular}{l}
Can your children:

- Identify properties which make materials suitable to be used outside

- Explain, in terms of properties of a material, why certain materials and objects can't be left outside

} \& \multirow[t]{3}{*}{

Horizontal:

History

Vertical:

Y2 - Uses of everyday materials Y5 - Properties and changes of materials Investigative skills - all years
\end{tabular}}

\hline \& \multicolumn{2}{|l|}{Key concepts:} \& \&

\hline \& | We need to understand the properties of different use them and treat them. |
| :--- |
| Before we start an investigation, we need to consid going to collect. | \& aterials in order to know how to what data (answers) we are \& \&

\hline \multicolumn{2}{|l|}{Key terms} \& \multicolumn{3}{|l|}{Common misconceptions}

\hline \multicolumn{2}{|l|}{Wood, metal, ceramic, plastic, rock, glass, hard, soft, waterproof, strong, flexible/bendy, rust, magnetic, hard, strong, heat, electricity, shiny, heavy, malleable} \& \multicolumn{3}{|l|}{}

\hline \multicolumn{2}{|l|}{Suggested activities} \& Resources \& \multicolumn{2}{|l|}{Useful links}

\hline \multicolumn{2}{|l|}{| Which toys can be left outside? What are they made of? |
| :--- |
| Look at a range of toys - including playground equipment if possible. Historical toys - how were they used? How were they cared for? Could you leave them out in the garden? What would happen? |
| Look at playground items, toys that they might have outside school or in their gardens, and toys which are inside. |
| Are all toys going to be ok if we leave them outside? |
| Get the students to make predictions. |
| Choose a range of toys. Leave outside for a week to see the effect of the weather. If it's particularly dry, perhaps you may need to simulate normal rain levels! |
| What's important is what information the students will gather. What effect does rain have on the toys? How quickly do they dry out? Is the material affected? |} \& A range of different toys to be left outside (some will get damaged) \& \multicolumn{2}{|l|}{}

\hline
\end{tabular}

Greater depth could consider longer term effects, and perhaps plan how
they might investigate and collect data in the long term.

