## Progression

 in Mental Calculation Skills

## MULTIPLICATION AND DIVISION

| YEAR 1 |  |  |
| :---: | :---: | :---: |
| Recall <br> Children should be able to derive and recall: | Mental calculation skills <br> Working mentally - with jottings if needed - children should be able to do the following: | Mental methods or strategies <br> Children should be able to apply the following strategies/methods appropriately: |
| doubles of all numbers to 10, e.g. double 6 <br> - odd and even numbers to 20 | - count in multiples of twos, fives and tens from different multiples. | Use the patterns of the last digits e.g. 0 and 5 when counting in 5 s . Knowing that all multiples of 2 are even. |
| YEAR 2 |  |  |
| Recall <br> Children should be able to derive and recall: | Mental calculation skills <br> Working mentally - with jottings if needed - children should be able to do the following: | Mental methods or strategies <br> Children should be able to apply the following strategies/methods appropriately: |
| - doubles of all numbers to 20 , e.g. double 13 and corresponding halves. | - count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward | - partition - double the tens and ones separately then recombine |


| - doubles of multiples of 10 to 50 , e.g. <br> double 40 and corresponding halves <br> - multiplication facts for the 2,5 and 10 times tables and corresponding division facts <br> odd and even numbers to 100 | - double any multiple of 5 up to 50 , e.g. <br> 35. <br> - halve any multiple of 10 up to 100 , e.g. halve 90 <br> - find half of even numbers to 40 <br> - find the total number of objects when they are organised into groups of 2,5 or 10 | use knowledge that halving is the inverse of doubling and that doubling is equivalent to multiplying by two. <br> - use knowledge of multiplication facts from the 2, 5 and 10 times tables, e.g. recognise that there are 15 objects altogether because there are three groups of five <br> - use the commutative law and inverse relations to develop multiplicative reasoning (e.g. $4 \times 5$ $=20$ and $20 \div 5=4$ ). |
| :---: | :---: | :---: |
| YEAR 3 |  |  |
| Recall <br> Children should be able to derive and recall: | Mental calculation skills <br> Working mentally - with jottings if needed - children should be able to do the following: | Mental methods or strategies <br> Children should be able to apply the following strategies/methods appropriately: |
| multiplication facts for the 2, 3, 4, 5,8 and 10 times tables and corresponding division facts. | count on or back in $1 \mathrm{~s}, 10$ s or 100 s starting from any 2 or 3 digit number. | - use doubling to connect the 2,4 and 8 times table. <br> - partition - when doubling, double the tens and ones separately, then |


| doubles of multiples of 10 to 100, e.g. double 90 and corresponding halves. | - double any multiple of 5 up to 100 , e.g. 75. <br> - halve any multiple of 10 up to 200 , e.g. halve 170. <br> - multiply one-digit or two-digit numbers by 10 or 100, e.g. $7 \times 100$, $46 \times 10,54 \times 100$ <br> - find unit fractions of numbers and quantities involving halves, thirds, quarters, fifths and tenths | recombine. When halving, halve the tens and ones separately, then recombine <br> use knowledge that halving and doubling are inverse operations <br> using the commutative law to make calculations easier (rearranging numbers), e.g. $4 \times 12 \times 5=4 \times 5 \times$ $12=20 \times 12=240$. <br> recognise that when multiplying by 10 or 100 the digits move one or two places to the left and zero as a place holder. <br> use multiplication and division facts (e.g. using $3 \times 4=12,12 \div 4=3$ and $3=12 \div 4$ ) to derive related facts $(30 \times 4=120,120 \div 4=30$ and $30=120 \div 4$ ). <br> Recognise that finding a unit fraction is equivalent to dividing by the denominator and use knowledge of division facts. |
| :---: | :---: | :---: |

## YEAR 4

| Recall | Mental calculation skills | Mental methods or strategies |
| :---: | :---: | :---: |
| Children should be able to derive and recall: | Working mentally - with jottings if needed - children should be able to do the following: | Children should be able to apply the following strategies/methods appropriately: |
| - recall multiplication and division facts for multiplication tables up to $12 \times 12$. <br> - doubles of numbers 1 to 100 , e.g. double 58 and corresponding halves <br> - doubles of multiples of 10 to 100 and corresponding halves <br> - factor pairs for known multiplication facts | - count in multiples of 6, 7, 9, 25 and 1000 <br> - double any 2 digit number, e.g. double 39 <br> - double any multiple of 10 or 100 , e.g. double 340, double 800 and halve the corresponding multiples of 10 <br> - multiply and divide numbers to 1000 by <br> 10 and then 100 , e.g. $325 \times 10,42$ $\times 100$, <br> $120 \div 10,600 \div 100,850 \div 10$ <br> - multiply a multiple of 10 to 100 by a single digit number, e.g. $40 \times 6$. | partition - double or halve the tens and ones separately, then recombine <br> - use understanding that when a number is multiplied or divided by 10 or 100, its digits move one or two places to the left or the right and zero is used as a place holder <br> use knowledge of multiplication facts and place value, e.g. $7 \times 8=$ 56 to find $70 \times 8,7 \times 80$ <br> - use partitioning and the distributive law to multiply, e.g. 16 $\begin{aligned} \times 7= & (10+6) \times 7 \\ & =(10 \times 7)+(6 \times 7) \\ & =70+42=112 \end{aligned}$ |


|  | Multiply numbers to 20 by a single digit, e.g. 17 x <br> 3 <br> give the factor pair associated with a multiplication fact, eg. identify that if $2 \times 3$ $=6$ then 6 has the factor pair 2 and 3 <br> divide a 2-digit number by a singledigit number, e.g. $84 \div 3$ | use the associative law to multiply (rearranging operations), e.g. ( $2 \times$ 3) $\times 4=2 \times(3 \times 4)$ <br> use branching to chunk off multiples of the divisor using knowledge of multiplication facts and multiplying by multiples of 10, e.g. $84 \div 3=(\underline{20} \times 3)+(\underline{8} \times 3)=28$ |
| :---: | :---: | :---: |
| YEAR 5 |  |  |
| Recall <br> Children should be able to derive and recall: | Mental calculation skills <br> Working mentally - with jottings if needed - children should be able to do the following: | Mental methods or strategies <br> Children should be able to apply the following strategies/methods appropriately: |
| - recall multiplication and division facts for multiplication tables up to $12 \times 12$. <br> - square numbers to $12 \times 12$ | - count forwards or backwards in steps of powers of 10 for any given number up to 1000000 <br> - multiply and divide two digit numbers by 4,5 , 8 or 20 , e.g. 26 x $4,320 \times 5,14 \times 20,96 \div 8$ | - multiply or divide by 4 or 8 by repeated doubling or halving. To multiply by 5 , multiply by 10 then halve; to multiply by 20, double, then multiply by 10 |

- percentage equivalents of one half, one quarter, three quarters, tenths and hundredths
- factor pairs to 100
- prime numbers up to 19
- multiply by 25 or 50 , e.g. $48 \times 25$, $32 \times$ 50
- multiply and divide whole numbers and decimals by 10, 100 or 1000 , e.g. 4.3 x
$10,0.75 \times 100,673 \div 100$
- multiply pairs of multiples of 10, e.g. $60 \times 30$ and a multiple of 100 by a single
digit number, e.g. $900 \times 8$
- divide a multiple of 10 by a single digit number, e.g. $80 \div 4,270 \div 3$
- find factor pairs for numbers to 100. E.g. 30 has the factor pairs $1 \times 30$, $2 \times 15,3 \times 10$ and $5 \times 6$.
- Multiply and divide 2-digit decimals such as $0.8 \times 7,4.8 \div 6$
- divide a 3-digit number by a singledigit number, e.g. $154 \div 7$
- to multiply by 5 , multiply by 10 then halve; to multiply by 20 , double then multiply by 10 or multiply by 10 then double
- use knowledge of doubles/halves and understanding of place value, e.g. when multiplying by 50 multiply by 100 and divide by 2
- use understanding that when a number is multiplied or divided by 10 or 100 , its digits move one or two places to the left or the right relative to the decimal point and zero is used as a place holder.
- use the distributive (partitioning), commutative (rearranging numbers) and associative law (rearranging operations) for multiplication to make calculations easier
- doubling one number and halving another to get to the product, e.g. 25 $\times 32=50 \times 16=100 \times 8$

|  |  | use branching to chunk off multiples of the divisor using knowledge of multiplication facts and multiplying by multiples of 10 , e.g. $154 \div 7=(\underline{20} \times 7)+(\underline{2} \times 7)=22$ |
| :---: | :---: | :---: |
| YEAR 6 |  |  |
| Recall <br> Children should be able to derive and recall: | Mental calculation skills <br> Working mentally - with jottings if needed - children should be able to do the following: | Mental methods or strategies <br> Children should be able to apply the following strategies/methods appropriately: |
| - recall multiplication and division facts for multiplication tables up to $12 \times 12$ <br> - identify common factors and common multiples <br> - prime numbers up to 100 <br> - equivalent fractions, decimals, percentages for hundredths e.g. $35 \%$ is equivalent to 0.35 or $35 / 100$ | - count on or back in tenths, hundredths and thousandths <br> - multiply pairs of 2-digit and single digit numbers e.g $28 \times 3$ <br> divide by 25 or 50 e.g. 480 divided by 25,3000 divide by 50 <br> double decimals to 1dp e.g. double 7.6 and find the corresponding halves e.g. half of 15.2 | to divide by 25 , divide by 100 and then multiply by 4 ; to divide by 50 , divide by 100 and double it <br> use the distributive (partitioning) commutative (rearranging numbers) and associative law (rearranging operations) for multiplication to make calculations easier <br> doubling one number and halving another to get to the product e.g. $25 \times 32=50 \times 16=100 \times 8$ |


|  | - multiply pairs of multiples of 10 and 100 e.g. $50 \times 30,600 \times 20$ <br> - divide multiples of 100 by a multiple of 10 or 100 (whole number answers) e.g. 600 divided by 20,2100 divide by 300 <br> - divide a 3-digit number by a 2 -digit number, e.g. $336 \div 14$ | - use branching to chunk off multiples of the divisor using knowledge of multiplication facts and multiplying by multiples of 10 , $\text { e.g. } 336 \div 14=(\underline{20} \times 14=280)+$ $(4 \times 14=56)=24$ <br> - recognise how to scale up or down using multiplication and division, e.g. if 3 oranges cost 24p: |
| :---: | :---: | :---: |
|  |  |  |

