ACET Junior Academies'

Scheme of Work for Science Big Idea - Forces
 Year 3 - Magnets (Forces)

About this unit:

PoS - Forces

This unit continues the work on Forces that was started in the Rocks \& Forces unit. Throughout this unit we will be reinforcing the fact that a force is a push or a pull, and encouraging students to use the term 'push force' and 'pull force' where appropriate. The concept of a force is always the same - it is something which exerts a push or a pull - but when we are studying magnets, the students should realise that magnets exert a non-contact force. This can be difficult for them to grasp, as magnets clearly do contact each other, but we want them to understand that they feel the force before they touch each other, and that they come into contact because of the force.

There are many opportunities in this unit for students to develop their investigative skills. While they are exploring magnets, they should be encouraged to use scientific terms and explanations where they can, to make links with other units.

The concept of magnets can seem a little 'stand-alone', but the concepts they learn - particularly about attraction and repulsion - are fundamental to understanding some difficult concepts at KS3, KS4 and beyond. Understanding this well now, and being able to discuss it, will put the students in an excellent position to move on in science beyond KS2.

Unit structure

This unit is structured around seven science enquiries:

1. What do you remember about forces?
2. Attractive? or Repulsive?
3. Can we make a magnet useful?
4. Can a magnet make a ghost?
5. How strong is your magnet? Part 1
6. How strong is your magnet? Part 2
7. What happens to iron age artefacts?

Links to previous and future National Curriculum units
 Y3 Autumn 1 - Rocks \& Forces

- Y5 - Forces

Enquiry 1: What do you remember about forces?					
Links to previous learning	Scientific skills		Assessment criteria	Curricular links	
Y3 - Rocks and Forces	EA - Identifying, grouping and classifying Asking questions Making predictions Recording data		Can your children: - Remember that forces are a push or a pull - Name some magnetic and non-magnetic objects State that magnetism is a force which can be felt without objects touching	Horizontal: History - iron age Vertical: Y5 - Forces	
	Key concepts:				
	Magnets can push and pull each other without touching. Some metals are magnetic. Other materials are non-magnetic.				
Key terms		Common misconceptions			
Magnet, attract, pull, metal, non-metal, plastic, wood, ceramic, glass, plastic		Students often don't realise with magnets that a force is experienced by the magnets before they touch each other - it's a non-contact force.			
Suggested activities		Resources	Useful links		
What is a force? A push or a pull. A force makes something move, changes the way it moves, or changes its' shape. Friction is a force that pushes back against an object when it's moving. Demo - is there friction when objects don't touch each other? Rub your hands together, then move them past each other without touching. Which one gets hot? Magnets - how are they like and unlike friction? Like - can push and pull. Unlike - they don't touch each other to work. Teacher should demonstrate this with two magnets - show that one magnet will move towards another before the magnets have touched - and will repel in the same way. What do we want to find out about magnets? Investigate magnetic and non magnetic materials in the room. Try and get students to categorise them according to whether they can feel a force - a push or a pull (it should be a pull they feel, unless the other material is also magnetic).		Bar magnets			

Students should discuss how to record the data in an organised way. They could try out on whiteboards. There is no right/wrong - as long as it's organised and easy to see. Have tables ready for students who cannot make their own (after they have been able to explore/attempt)

GD students can identify what type of materials are magnetic/non magnetic. Encourage them to use a range of words to describe the properties of materials. Painted surfaces, e.g fridge - is the white paint magnetic? or the metal underneath? What does this tell you about the strength of the attraction?

Link to iron age. NOT all metals are magnetic. Iron is the most common magnetic metal - metallic objects which are attracted to metals usually contain iron.

high 5). Students can develop their own rules for the activity - Do they stay in contact once attached? How can they separate? Perhaps some students could be 'people', moving the magnets around, rather than the magnets just walking around on their own.

Similar factors repelling each other, while opposite factors attract is an important concept in science in KS3 and KS4 - particularly with electricity and nuclear physics. There is no need to discuss this here, but it's a good opportunity to get students to grasp the fundamental concept, and to
realise that in future they will be applying it to more than magnets

Enquiry 3: Can we make a magnet useful?				
Links to previous	Scientific skills		Assessment criteria	Curricular links
	EA - Problem solving Asking questions Making predictions		Can your children: - State that repulsion only happens between two magnets - Tell you that the force of a magnet can only be felt a certain distance away from it	Horizontal: D\&T Vertical: Y5 - Forces
	Magnets are attracted to certain metals. They can only repel another magnet. The force of magnets can not be felt very far from them.			
Key terms		Common misconceptions		
Magnet, useful, attract, repel, like/similar, opposite, pole				
Suggested activities		Resources	Useful links	
Where do we use magnets to help us in our daily lives? Students to think of examples. See link right for an example of how the repulsion of magnets is useful (attraction is more commonly useful). Repulsion only works between two magnetic objects. Attraction works between a magnet and a suitable metal. Design something useful using a magnet. Students can either annotate a drawing, or they could try and make whatever it is they design. Simple - picking something metal up (mechanics use these to pick up dropped screws from inside engines), keeping a fridge door closed, instead of poppers on clothes. A compass to show explorers which way to go - Link to Geography. Students will need guidance if they are to design/make this. Students will need to explore how far away from a magnet the force can be felt - some magnets are stronger than others, but they all have a limit as to how far away the force can be detected.		Useful objects that use magnets A range of magnets	https://www.wish.com/product/5a4211f6446c9c1e045 87987?hide login modal=true\&from ad=goog_shoppi ng\& display country code=GB\& force currency code =GBP\&pid=googleadwords int\&c=\%7Bcampaignld\%7D \&ad cid=5a4211f6446c9c1e04587987\&ad cc=GB\&ad curr=GBP\&ad price=31.00\&campaign id=6493229882 \&gclid=CjwKCAjw95DOBRBFEiwAcO1KDMQqbshIC6 LM WczonL9ujLxhc7unZupkLQk1ky69VZrRScpRBjKnhoCncc QAvD BwE\&share=web	

Enquiry 6: How strong is your magnet? Continued from E5				
Links to previous learning	Scientific skills		Assessment criteria	Curricular links
	Asking questions Observing and measuring Recording data Interpreting and communicating data		Can your children: - Tell you which the strongest magnet is - Explain, using numbers, how much stronger one magnet is than the other.	Horizontal: Vertical: Y5 Forces
	Key concepts:			
	We can measure how much stronger one magnet is than another. We should be able to use numbers to say how much stronger one magnet is than another.			
Key terms		Common misconceptions		
Magnet, attract, strong, stronger, measure		Students often think that unexpected answers are wrong or 'bad'. In fact, they can give us lots of good information - and show us how we could do the investigation better next time.		
Suggested activities		Resources	Useful links	
Second lesson - carrying out the investigation. They can be given tables to record their results. They should be challenged to carry out the investigation like 'real scientists'. Each magnet should be tested 3 times, and they should get a similar answer each time. There is no need to work out a mean - just have an understanding that the results should be similar each time they do it. If not, they should re-do it until they have 3 similar results. If they don't, they/you should question their methods. No need to say that they are 'wrong' - but how could their method be improved?		A range of magnets Rulers that measure in mm Paperclips		

